R&D support

R&D support

R&D support




R&D support 

Aciturri maintains a strong commitment to the encouragement and the development of new technology and promotes continual research and development, with the purpose of maintaining a culture of Technological Investigation which will increase its competitiveness to a national and international level.

The company has participated, since 2002, in a number of European R&D projects. Aciturri has taken part in reference projects such as the V, VI, and VII European Framework Programme, like AWIATOR, SILENCER, RC2, LAYSA or HP-SMART EMA, the last in the Clean Sky frame.

Aciturri is still strongly active at a national level, both individually and in partnership with clients, suppliers and competitors. Currently the main research activity focuses on composite material. In which Aciturri is involved in CENIT projects like ICARO alongside Airbus or SINTONIA with Boeing. The innovation of the team has led to the search of applying their skills and knowledge to projects outside the aeronautical sector, which in some cases has resulted in the award of new patents.


Aciturri participates in R&D projects which are co-financed by national organisations and ERDF


POLE Project

The POLE Project forecast an investment of € 2 million for R&D activities within the sphere of activity of the Regional Strategy for Smart Specialisation (RIS3), is financed by the Castille and León Innovation, Finance and Business Internationalisation Agency through the European Regional Development Fund (ERDF).

With a planned duration of two years, the project is part of Aciturri’s Strategic R&D Plan for the engine segment, and involve some very demanding earning targets.

It includes technology development activities exclusively for plane engine production, primarily in two lines:

  • Metal products, especially advanced machining, surface technologies and automation processes.
  • Procurement for additive manufacturing, evaluating different technologies for each type of product.

R&D support

Research on the integration of adaptive design and topological optimization with advanced manufacturing technologies for the generation of high-requirement aeronautical components - OPTIFLY3D"

The overall goal of this OPTIFLY3D project is detailed research on the integration of adaptive design and topological optimization with advanced manufacturing technologies for the generation of high-requirement aeronautical components. This aim encompasses the following specific goals:

  • Research, study and define families of aeronautical components that can be redesigned, optimized and manufactured using additive manufacturing technology.
  • Research and analyze the capabilities and viability of adaptive design and topological optimization in its application on high requirement aeronautical components.
  • Study and evaluate the influence of manufacturing strategies on the properties of the elements generated in additive manufacturing processes.  
  • Research and value the influence and possibilities of thermal and mechanical post-processes on the properties of components developed through additive manufacturing.
  • Study and evaluate the process times, energy consumption and materials in the integration of design processes and additive manufacturing in aeronautical elements of high requirement.
  • Study the costs of the complete process of adaptive design, optimization and manufacturing of aeronautical components.



  • Analysis of the elements’ physical and morphological characteristics (structure and engine) that can be optimized.
  • Adaptive design and topological optimization of the selected elements, maintaining their mechanical properties while reducing the amount of material used.
  • Definition of optimal manufacturing strategies and optimization of platforms and post-processes.
  • Analysis of related costs.


R&D support

“Optimization of the industrial process through the training of assembly personnel based on Virtual and Augmented Reality systems”

The overall goal of the project, jointly developed between PixelsHub SL and Aciturri Additive Manufacturing SLU, is the development of a virtual manual for the assembly and / or maintenance of industrial engines for internal consumption or for customers through the use of low-cost reality devices " Head Mounted Displays ".

For this purpose, the following specific technical objectives are proposed:

  • VIRTUAL TRAINING: Virtual Reality (HTC VIVE) to train operators in different industrial processes of Aciturri. Purpose: To develop a platform pilot for the training of assembly personnel in a virtual reality environment.
  • VIRTUAL ASSISTANT: Augmented Reality (HOLOLENS) to assist operators in different industrial processes of Aciturri in real time. Aim: Integrate a protocol of assembly/disassembly of the model of the different commercials into Hololens, as well as an interface that allows, at the request of the observer, to go through different parts of the protocol as it requires information in real time of the process. With this development it is intended that the operator has a manual of consultation in real time of the process in which he is immersed, thanks to the integration of the operation manual in augmented reality (Hololens).



The use of Virtual Reality has been validated for the training of the plant staff in the assembly of industrial components and the Augmented Reality as a real-time assistant for that assembly.



R&D support




EWIRA Project

ACITURRI participates in Clean Sky 2 R+D program (within Horizon 2020 framework) leading the EWIRA Core Partner consortium; which is integrated by four members: ACITURRI Engineering and ACITURRI Assembly (Spain), CAETANO Aeronautics (Portugal) and The Manufacturing Technology Centre (UK). EWIRA activity is concentrated in introducing innovative design, manufacturing and assembly technologies in wing components of the FTB#2 flight test bed demonstrator. FTB#2 demonstrator is leaded by Airbus Defense & Space within the Regional-IADP consortium. The focus of innovation activity is in:

  • New assembly concepts reducing process time and costs;
  • Innovation in metallic machining in order to improve efficiency and reduce environmental impact;
  • Innovative design techniques in additive manufacturing for critical parts; and
  • New composite manufacturing techniques focusing on part number reduction.


R&D support



The European manufacturing industry is facing new challenges in terms of adaptability, flexibility and vertical integration. The SYMBIO-TIC project addresses these important issues towards a safe, dynamic, intuitive and cost effective working environment were symbiotic collaboration between human workers and robots can take place and bring significant benefits in tasks and processes that are too complex to be automated. 

In this context ACITURRI collaborates with IDEKO and PRODINTEC to shape one of the project demonstrators in which it is intended to emulate the assembly of one rib of a torsion box; in turn developing an assembly process in which the objectives and new technologies of the SYMBIO-TIC project are integrated.


R&D support





Aciturri Engineering has a contribution in the H2020 project called “COMMUNION”.
ComMUnion concept aims to be a universal solution for advance joining process for the manufacturing of hybrid 3D thermoplastic/metal composite components. Independently from the specific interest of ACIENG as end users members of the consortium, this task aims at determining the requirements of the system in order to respond to this multi-stage flexibility.


R&D support



RTM Leading Edge Challenge

During the period 2016-2017, Aciturri Engineering has been leading the project “Development of leading edges in RTM”, which it is executing together with Aciturri Composites and the technology center CIDAUT, in an R&D program that forms part of the "COLLABORATION CHALLENGES" funding program. The challenge of the project is to be able to manufacture a new leading edge concept using the RTM technique and considering high production rates.

R&D support



SLS Aero Project

The general goal of the project is to undertake the necessary research for the definitive and industrial application of additive manufacturing (AM) technology in the aeronautics industry, allowing the mass production of flight parts and tooling, which is to say, to increase the TRL of metallic additive manufacturing technology in the aeronautics market.

The following specific technical objectives have been proposed to achieve this:

- Determine the current capacity of AM technology using laser sintering to address the high-level requirements of the aeronautics industry.
- Increase knowledge of the influence of the principal variables of the laser sintering process on the final quality of parts (structural performance, metrology, etc.).
- Determine the possibility of maintaining the capacity for homogenization, repetition, and reuse of the material from AM technology, while still responding to the industry's requirements.
- Determine the current capacity of AM technology using post-processing to address the high-level requirements of the aeronautics industry.
- Increase knowledge of the influence of the principal variables of the post-processing processes on the final quality of parts.
- Validate findings by manufacturing tests of prototypes on a laboratory scale to demonstrate the capabilities and real needs of the complete technology (laser sintering + post-processing).
- Determine the most suitable process conditions that will make it possible to certify additive manufacturing processes for obtaining aeronautical components in the future.


Degree of homogeneity, repeatability and reuse of ALM technology materials applied to aeronautical sector requirements.

In order to study the repeatability of the process along with its quality, different experiments have been made that have allowed to analyze both mechanical properties and tolerance. Results indicate that the process is repeatable and that no significant differences are identified between the different working areas in the work platform of the SLS equipment.

Identification of the variables of operation of the laser sintering process more adequate to respond to the needs of the aeronautical sector.

We worked on the design, development and manufacture of test pieces, ad hoc parts and demonstrators. During the processes, we have evaluated the manufacturing strategies and machine parameters most appropriate to get the best results both from the dimensional and physical-mechanical point of view of each element. This experience has served to establish the most appropriate manufacturing methodologies to build right parts, guarantee repeatability of the process and its homogeneity.

Finishes and dimensional tolerance.

High requirements required in finishing and dimensional tolerance are characteristic of the manufacturing processes of the aeronautical sector. Inside this framework, analyzes, experiments and studies related to different technologies have been made, complementing the SLS, allowing to improve surface finish and achieve the required dimensional tolerance.

Identification of suitable materials for the aeronautical sector within the families of metal alloys previously identified as more appropriate.

Inside of aeronautics requirements, the metallic materials used are characterized by providing adequate mechanical properties with the smallest weight as possible. In this case, one of the materials most used is a titanium alloy (Ti6Al4V), which brings lightness at the same time as resistance. The studies made in the SLSAero project have focused on the analysis of this material and the results have been positive. Titanium alloys processed by SLS have high capacities for the aeronautical sector.

R&D support




Aciturri Engineering is participating as a partner in the “ESTENEA” project, “ESTUDIO DE TECNOLOGÍAS DE BAJO COSTE Y ALTAS CADENCIAS EN COMPOSITES (STUDY OF LOW-COST, HIGH-RATE TECHNOLOGIES IN COMPOSITES)”, financed by the CDTI and cofinanced by FEDER. The goal of the project, which is led by Airbus, is to search for and develop materials and processes that make it possible to undertake the manufacture of aeronautical structures at lower cost, adjusting to the increased production rate required by the market. The project began in 2014 and will continue through the end of 2017.
Aciturri, along with different technology centers such as CIDAUT, AIMEN, CTME, FIDAMC and 3T TECHNOLOGIES, is taking part in the search for materials for processes that use injected resin, and participating in the development of processes such as: additive manufacturing applied to tooling, use of lasers as an alternative to manual sanding, and optimization of simulation testing.

R&D support 



Aeronautical sector R&D Project led by Boeing Research & Technology Europe SL that aims to study and develop new technologies aimed at minimizing the environmental impact and increasing the efficiency of unmanned aircrafts (UAVs), by improving their cycle life.

 This is a collaborative project developed by a national consortium funded and financied by CDTI through the CENIT program 2009.

ACITURRI COMPOSITES participates in various project activities ranging from research on new recyclables materials and their processing out of autoclave, using in addition, advanced preparation techniques, to the development of more efficient design tools. For this porpoise, ACITURRI works in collaboration with a network of four other Spanish technology centres closely linked to the aerospace and industrial sector: TECNALIA (Guipúzcoa), IMDEA (Madrid), AIMEN (Pontevedra) and CARTIF (Valladolid).

R&D support

TARGET Project

Aeronautical sector TARGET Project financed by CDTI through the CENIT 2010 program and led by Airbus Operations SL. The project aims to investigate and develop new intelligent technologies and environmentally sustainable smart generation in composite structures. In this action plan ACITURRI COMPOSITES focuses its research on liquid injection processes and in the automation of preforming operations as an alternative to manual preforming operations or metallic solutions.

As part of this project ACITURRI is working with the CIDAUT foundation (Valladolid), a national technology centre with experience in these technologies and their application for the aeronautical sector.

R&D support


COROMA PROJECT (Cognitively Enhaced Robot For Flexible Manufacturing of Metal and Composite Parts)

To progress in the scientific and technological development of robotics is one of the pillars of Industry 4.0 and constitutes one of the priority action axes marked by the European Commission to boost the competitiveness of the industrial sector in Europe.

The European project COROMA, an initiative coordinated by the technology centre IK4-IDEKO and in which Aciturri participates as final user of the advancements, is developed in this context. It seeks to develop a new concept of intelligent, modular and flexible industrial robots, with the capacity to execute multiple processes and to manufacture metallic and composites detail parts for sectors as demanding as aeronautics.

The robotic system will be able to perform drilling, trimming, deburring, polishing, sanding, non-destructive inspection and adaptive fixation. Using a simple interface, it will receive basic commands that will require minimal programming effort from the operator. In addition, it will move autonomously in the production plant, perceiving the manufacturing environment and locating the elements to be manipulated, even using the required tools for the processing of the pieces.

R&D support